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A. Problem Statement & Scope

Problem Statement

A Reinforcement Learning (RL) agent attempts to develop a policy - a mapping of states to actions
- that maximizes cumulative reward over time [1]. It has been argued that the RL paradigm is
sufficient to explain the evolution of intelligence and associated properties of mind in all biological
agents, including humans, and it is the standard framework within which current attempts to build
artificial general intelligence and superintelligence sit [2, 3] 4].

There exist problems where quantum computation (QC) has a fundamental advantage over
classical computation [, 16, 7, 8,19, [10, [11]. It has been shown that giving RL agents access to QC
can provide a categorical advantage in goal-seeking capability — that is, a separation not only of
degree but of kind — over agents without such access [12].

In this project, we seek to discover goal types where categorical advantage might be had for
agents with access to near-term QC systems, and if such exist, implement agents with this advan-
tage. Because we seek categorical advantage, we need to find a strategy that attacks a fundamental
aspect of the RL paradigm. A common approach is to replace neural nets with quantum circuits
[13} 14} [15], but we instead propose to continue to use neural nets as general function approxi-
mators and instead focus our attention on RL’s reliance on accurate computation of reward. It is
known that corrupting the reward signal can have devastating effects on an agent’s ability to learn
[16]. To attempt to exploit this feature, we start by examining problems where reward is most nat-
urally computed via simulation of a quantum system. Simulating quantum systems is a problem
category where QC has fundamental advantages over classical computation [17]. If we want an
agent to achieve goals that require simulating quantum systems, giving access to QC might provide
the categorical advantage we seek. This motivates the following problem statement.

Problem Statement: In the case where reward is the output of a quantum simulation, we aim to
(a) discover what conditions are sufficient for RL agents with access to QC to be categorically
superior to agents without such access, and (b) solve a set of industrially important challenge
problems requiring design of quantum systems using such agents.

Phase 1 Scope

We initially narrow our scope to examine the special case where the quantum simulation generat-
ing reward is a domain where quantum advantage has already been claimed. Quantum advantage
refers to a situation where a quantum computer can solve a problem that is either impossible or im-
practical for classical computers to solve within a reasonable timeframe or using feasible resources.
There are currently three domains in which quantum advantage claims exist: random circuit sam-
pling [18], boson sampling [19]], and simulating quenches through quantum phase transitions in
magnets [20], although none of these are universally accepted by the scientific community.
Specifically, we restrict our attention to the case where the agent-environment interaction is a
Markov Decision Process (MDP), and the reward returned from an environment containing state
Sy is R, = F(S;), where F is any function where a current claim of quantum advantage exists (see

Fig.[[]and Fig. 3.1 in [1]]).
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Figure 1: The agent—environment interaction in a Markov Decision Process, restricted to where
reward R, = F'(S;), where I is any function where a current claim of quantum advantage exists.
This is a special case of the more general case where [ is the result of any quantum simulation.

Scope: In this Phase 1 report, we examine a concrete example of this type of problem, which we
formulate as a fully observed zero-sum two-player game with terminal states we call Tangled. A
terminal state S7 is a system state where the game being played has ended, and a result must be
obtained to determine the outcome. Familiar games in this category include Chess, Checkers, and
Go. The reward associated with a Tangled terminal state is Ry = F(St) € {+1, —1,0}, denoting
the reward obtained from a win, loss, or draw, and F’ is a function where there is a current claim of
quantum advantage.



B. Impact on the Problem Area

The impact of recent advances in artificial intelligence (AI) has been profound. There are few
areas of human endeavor where Al has not already had impact. As Al improves towards artificial
general intelligence (AGI) and superintelligence, and moves from digital to embodied form, it is
likely that eventually Al will be viewed as one of the most important transformative technologies
ever developed [21]].

The resources currently being spent on advancing Al are remarkable. Technology companies
plan to spend over $300 billion in capital expenditures in 2025, up from $230 billion in 2024
[22], while Goldman Sachs research indicates that corporations and governments plan to spend
around $1 trillion on capital expenditures in the coming years to support the development and
deployment of Al [23]]. Governments worldwide are simultaneously racing to secure control over
critical supply chains, including computational resources for data centers and material resources
essential for embodied Al applications, including in defense applications where, for example, Al
for drones has already significantly impacted the outcome of major conflicts [24, 25].

While there has been an explosion of development in building agents, this has almost exclu-
sively been restricted to classical agents in purely classical environments. In the work described
here, we aim to demonstrate that there exists an opportunity for QC to be seriously considered in
the ongoing understanding of intelligence, agency, and the ultimate power of RL agents. We are
particularly interested in high-value uses of RL agents in cases where giving these agents access to
QC provides categorical advantage over agents without such access. A potential such use, and the
one we focus on here, is where the goal of the agent is to design quantum systems with desirable
properties.

The work presented here is a simplified version of the following general problem. Given a
quantum system parametrized by some state space; an agent with a set of actions it can take to
modify the system’s state (such as changing the positions of nuclei in a molecule, adding an atom
to a specific location, or modifying coupling strengths between spins); a desirable set of properties
of the system (such as stability, binding affinities, chemical reaction rates, conductivity, etc.) that
can be extracted via quantum simulation of this system; and a reward function that depends on
those properties. If we have all these ingredients, we can train RL agents to design quantum
systems with desirable properties using the techniques described here.

Currently, the range of quantum systems and reward functions where these ideas can be imple-
mented — regimes in which quantum advantage has already been claimed — is limited. As technol-
ogy advances, the regimes in which we can usefully perform quantum simulation with quantum
computers should expand to encompass much more complex and interesting systems.

Agents capable of designing arbitrary quantum objects with specified properties would repre-
sent a transformative capability for multiple commercial sectors. Such a system could accelerate
pharmaceutical development by enabling the rational design of drug molecules with optimized
binding affinities, reduced side effects, and improved pharmacokinetic properties [26, 27], poten-
tially reducing the typical 10-15 year drug development timeline and associated costs exceeding
$1 billion per approved compound [28]]. In materials science, such agents could facilitate the
discovery of novel catalysts for industrial processes [29], high-performance semiconductors for
electronics applications [30], and energy storage materials with enhanced capacity and cycling
stability [31]. The chemical industry could benefit from optimized reaction pathways and process
conditions, leading to improved yields, reduced waste, and lower energy consumption [32]. Ad-
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ditionally, the capability to design quantum materials with tailored electronic, optical, or magnetic
properties could enable breakthroughs in computing hardware, photovoltaic devices, and advanced
sensors [33}134]. The economic impact would likely be measured in hundreds of billions of dollars
annually across these sectors.

More fundamentally, and perhaps even more interestingly (at least to us), agents with access
to efficient and general quantum simulation, which presumably requires QC, gain the capability
to model the world as it truly is. Nature appears to be quantum mechanical. If we want synthetic
intelligences to be able to do science, we should endeavor to give them the tools they need to
understand and predict how systems behave in the real world.

In addition to the possibility of demonstrating categorical advantage of agents with access to
QC over those that are restricted to classical computation, we also hope that the current work will
provide new sets of tools to the community with which to study the topic of quantum advantage
itself. Instead of focusing on whether a quantum system computing a particular function /' can do
so with quantum advantage, we can focus on whether an agent with access to F' can outperform
classical agents without access to QC. While it might seem to introduce unnecessary complexity,
thinking of whether a quantum computer can be used to train an agent to be better at playing
an easily understood game (or more generally, design quantum systems with desirable properties)
may provide a more interesting, valuable, and compelling testbed than just the basic function itself.



C. Quantum Advantage

In this Phase 1 submission we restrict our scope to considering only functions F’ (see Fig.|l|) where
reasonable claims of quantum advantage exist. Over time, each of these claims will be tested and
some or all may be overturned with advancing classical algorithms and specialized approaches.
It is our view that ultimately this is a one-sided battle, and while timescales remain uncertain,
eventually QC systems will mature enough so that quantum advantage claims will transition from
contested to universally agreed upon in the community.

If we assume quantum advantage for computing F' as a necessary condition for what follows,
there is still the question of how (or if) this translates to the ultimate power of agents trained with
or without access to QC. We approach this in the following manner.

We treat the computation of reward R; = F'(S;) by quantum computing hardware as repre-
senting the true reward, and treat any approximate computation R, = F(S;) using a classical
approximation [’ as introducing corruption of the reward signal whenever R, # R,. There are
strong results known about the evaluation of agents in the presence of corrupted reward [16] that
indicate the possibility of categorical advantage of RL agents with access to QC. Specifically, there
are reward corruption rate thresholds over which no agent can learn to outperform an agent that acts
purely randomly. If classical techniques cannot overcome these thresholds, then no agent trained
using classical simulation of F' can learn to do better than a random agent, and therefore agents
that use the ground truth for F' will be categorically superior.

A New Type of Game

While ultimately our objective is to explore the use of agents for designing high-value novel quan-
tum systems, we begin by stripping away all of the complexities of the real world and focus on
agents designed to play a new type of game.

Games provide well-defined environments with clear objectives that facilitate the evaluation
and advancement of Al algorithms. The work of Shannon on chess programming in the 1950s
established games as a natural domain for exploring computational intelligence [35], while the
development of specialized game-playing systems like Deep Blue, which defeated world chess
champion Garry Kasparov in 1997, demonstrated the potential for Al to exceed human perfor-
mance in complex strategic tasks [36]. The introduction of Monte Carlo Tree Search algorithms
revolutionized game Al and found applications beyond gaming [37], while the advent of deep re-
inforcement learning marked a paradigm shift with systems like AlphaGo achieving superhuman
performance in Go through self-play and neural network function approximation [38]]. Subse-
quently, multi-agent reinforcement learning in games such as Dota 2 and StarCraft II has advanced
our understanding of complex strategic reasoning and emergent behaviors [39, 40], while the de-
velopment of general game-playing agents has pushed toward more flexible and transferable Al
systems. Gaming environments continue to serve as laboratories for testing new architectures,
training methodologies, and theoretical frameworks.

The new kind of game we introduce here is designed to test whether agents with access to QC
can be fundamentally superior to agents having only access to classical computation. We focus on
fully observed zero-sum two-player games with terminal states. Familiar games in this category
include Chess, Checkers, and Go. A terminal state St is a state where the game being played has
ended and a result must be obtained to determine the outcome.



We examine the case where the environment in Fig. |1{ contains a quantum computer, and the
result of gameplay is z = F(Sr) where F' is any function where a claim of quantum advantage
has been made. Here z = {41, —1,0} is the game result, where z = +1 means player one won,
z = —1 means player two won, and z = 0 is a draw. We will use the convention that player one is
red, and player two is blue.

Tangled

To make this idea concrete, we introduce a game we call Tangled. Tangled is a fully observed
zero-sum two-player game with terminal states.

Tangled is played on a connected game graph G(V, E), where V' is a set of |V vertices and £
is a set of | E'| edges {e;; } where e;; is an edge connecting vertices ¢ and j and ¢ < j. Each player
starts the game with one vertex owned by that player, which are V}, and V,,, for players one and two
respectively. The values of & and m are parameters of the game.

Players take turns coloring all the edges of G one of three colors: gray, green, or purple. Player
one (red) always moves first. The game starts with all edges unselected. The game ends, and the
winner is determined, once all edges have been colored. The final game graph state at the end of a
game is the terminal state.

The intuition behind Tangled (which we will make precise in the following sections) is that
vertices map to spins, and edge colors map to Ising couplings between spins, with green mapping
to ferromagnetic interactions and purple mapping to antiferromagnetic interactions. Gray edges
have zero coupling. The objective of the game is to have more of the spins in the graph align with
the spin on your vertex than with the spin on the other player’s vertex.

State Space

Each possible game state can be written as a list of | E| integers each drawn from the set {0, 1, 2, 3},
corresponding respectively to uncolored, gray, green, and purple, giving a total of 4/Z possible
game states. There are a total of 3/¥! possible terminal states (zeroes (uncolored edges) not being
allowed in terminal states).

The |E| elements of the state list are assigned to the edges in lexical/dictionary order (for
example, eq; is first in the list if it exists, then ey, etc., all the way up to the last possible edge).
The initial state of all games is a list of | E| zeroes. The terminal state of each game has no 0 values
in the state list (all entries one of 1, 2, or 3).

Action Space

There are 3| E| possible actions, corresponding to the 3 possible choices per edge.

Moves Per Game

Each Tangled game has exactly |E| total moves.



Adjudication of Terminal States

Here we describe the function z = F(Sr) that computes the winner of a Tangled game with
terminal state Sp, which is a complete edge coloring of the graph .

We consider a time-dependent Hamiltonian that interpolates between a driving Hamiltonian
‘Hp and a classical Ising problem Hamiltonian H p:

H(t) = T(t/t.)Hp + T (t/t)Hp (1)
Zaz, Hp =) Jyjoios, )
e ; €EE

where o} are Pauli matrices acting on qubit ¢, and I" and J are the transverse-field and Ising
energy scales [20], respectively. The evolution starts from time ¢ = 0 in a paramagnetic phase with
I'(0) > J(0) and ends at time ¢ = t,,, which is a parameter of the adjudication, with I'(1) < J (1),
deep in the spin-glass phase. These two phases are separated by a quantum phase transition (QPT)
whose behavior is dictated by the topology of the programmed Ising model.

Any game terminal state St = (S, ..., S|g|—1) can be mapped onto an Ising model

E<50a'-‘7S|E\—1) = Z Jijsisj 3)
€;j cFkE
where each vertex V; in the game graph is mapped to a spin s;, and couplings between two vertices
Vi and V} are:

» J,; =0ifedgee;; ¢ £
o Ji; = 0if Sle;;] = 1

® Jij =—-1 1fS[el ] =

b Jz'j =1 lfS[ezj] = 3

where the notation S[e;;| means the value assigned to edge e;; during gameplay (recall that the
state definition has (so, ..., 5|g|—1) in dictionary order). Under this map, gray, green, and purple
colorings correspond to zero, ferromagnetic, and antiferromagnetic couplings respectively.

We define the spin-spin correlation matrix after the above evolution to be

Ciyj=<o0j0;>—<o0; ><0; > 4)
from which we derive the expression for a quantity we call the score of the game
R=2 Cij= 2 Cu ®)
i#k J#m

where £ is the index of the vertex V;, owned by player 1, and m is the index of the vertex V,,, owned
by player 2.
We then define the evaluation of the terminal state to be

e 2 =+411f R > e (player 1 wins if R > ¢€)
* z=—1i1f R < —e (player 2 wins if R < —¢)
e 2=0if —e < R < e(draw if |R| < ¢)



where € is a parameter of the adjudication.

The authors of [20] claim that computing the spin-spin correlation matrix C;; at s = 1 after
transition through the QPT is a domain of quantum supremacy for certain ranges of anneal time ¢,,.
If this claim holds, then evaluation of Tangled terminal states also has this property.

Three Different Adjudication Strategies

Here we consider three different adjudication strategies.

1. The first is an exact solver that simulates the time evolution of Eq. [I] via integration of the
Schrodinger Equation. This method is straightforward but limited to small game graphs due
to the exponential cost of the method.

2. The second uses simulated annealing to approximate the outcome of the dynamical process,
by attempting to return the equilibrium statistics of the classical Ising problem Hamiltonian.
This approximation should work well in the regime where the system has time to thermally
equilibrate into the ground state of the problem Hamiltonian post-anneal, but we expect it
to fail when computation timescales are shorter than the timescale for thermal equilibration
of the problem Hamiltonian, which in the spin glass phase should be the case (see [41] for
analysis and experimental results supporting this). This second strategy is a specific example
of a classical approximation to computing reward associated with terminal states z = F(Sr).

3. The third uses the D-Wave Advantage? quantum computing system, by embedding the game
graph into hardware and collecting statistics on running the quantum annealing process de-
scribed in Eq. |I| and thereby computing the score of the game (see [42] for an overview
of the embedding process used). This third strategy is by definition the ground truth for
adjudication of terminal states by a quantum computer z = F'(S7).

Another possibility for adjudication are tensor networks [43]], which model quantum systems
by assuming entanglement between the system’s degrees of freedom is local. The code described in
this paper has not been released, and the methods described in the paper are non-trivial to reproduce
independently. The trends shown in [20, 41, 43]] indicate that the tensor network approach should
fail in the quantum supremacy regime (the D-Wave system has strong evidence of volume-law
entanglement entropy scaling [44]]). This solver method should provide a better approximation to
true reward for Tangled (and more generally, the domain of quantum advantage claimed by the
quantum annealing approach), and will be tested if and when code is released.

Game Parameters

We denote a fully specified instance of Tangled T'(G, (k,m), €, t,), where the four parameters are:

1. The game graph G

2. The choice of player-owned vertices Vj and V/,,
3. The draw boundary €

4. The anneal time ¢,



Comparing Agent Capability

We use the Elo score [45], a measure of agent performance in standard use in the RL community
(see also Appendix A).

Classical Simulation as a Corrupted Reward Signal

An aspect of RL that can be confusing is the nature of the boundary between agent and environ-
ment. When dealing with a classical agent and a classical environment, it is usually fine to not
have to deal with where this boundary actually is, as the computation that’s running the agent uses
the same substrate as its environment (classical computing hardware), and the systems the agent
models are also classical systems.

Information is always embodied, and there cannot be a concept of an agent outside of the
matter and energy upon which its information resides. This means that there is no real boundary
where ‘agent’ rests squarely on one side and ‘environment’ sits on the other. Decision-making and
learning are physical processes that are inextricably intertwined with the physics of the substrate
upon which they occur. In the purely classical case, we can safely ignore this as the laws governing
the information that makes up the agent are the same as the laws of the environment it is learning
about. But in our case, we have to be more careful about how we draw this boundary.

___________________________________________________________
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Figure 2: An agent in the real world (bottom) takes actions A, that generate environment states
S; and true rewards R, = F'(S;). We assume that inside the agent there is a model of the world,
where (a) the model includes QC, which is assumed to accurately compute R, = F'(.S;), or (b) the
model does not include QC, in which case the reward R, = F(.S,) is assumed to be corrupted, in
the sense that R, # R, for at least some states S;.
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We are interested in cases where measuring F'(S;) from the real world is expensive, such as
measuring the properties of a novel small molecule drug. This makes techniques where an agent
learns from directly sampling from the environment, such as inverse reinforcement learning [46],
impractical, and an agent must attempt to learn policies from internal simulation. We differentiate
the cases where the agent has access to the ground truth reward signal (Fig. 2), or must rely on
classical approximations to it (Fig. 2b). These two cases differ in that in (a) the agent resides at
least in part on a quantum mechanical physical substrate, whereas in (b) the agent resides entirely
on a substrate designed to be classical. We treat the latter case as learning in the presence of a
corrupted reward signal [[16].

In the case where the possible values of R, are a discrete set (such as is the case for two-player
zero-sum games with (R; € {+1,—1,0}) or without (R, € {+1,—1}) draws), if there are no
other possible simplifying assumptions on the corruption channels, the authors of [16] derive a No
Free Lunch theorem proving that no possible agent learning from the corrupted reward signal can
outperform a random agent. In this limit, one can prove that agents learning from the true reward
signal by running at least in part on quantum mechanical substrates (agents of the type shown in
Fig.[2p) are categorically superior to any possible classical agent.

In the case studied here, where we use simulated annealing to compute F(S;), the dominant
error type is systematic mis-specification of reward. For example, if for some state .S; the true
reward is R, = F(S7) = +1, simulated annealing might consistently produce R; = F'(Sy) = —1
(we will see in the following section that this is the case and provide a physical mechanism for
it). This type of systematic reward corruption is especially dangerous, as the agent has no way
of differentiating between cases where the classical approximation is reporting the true reward or
reporting an incorrect reward.
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Hello World: Tangled on P;

To see how Tangled gameplay works, we start by playing on the smallest game graph that allows
wins — P, the path graph on three vertices (Fig. [3h). Here we focus on the T'(P;, (0, 2), 1/2, 350ns)
game instance. The full game tree is shown in Fig. [3pb. Player one owns vertex V; (shown colored
in red), and player two owns vertex V5 (shown colored in blue). We use this coloring convention
for vertex ownership throughout.

Player one moves first. They have 3| E| = 6 possible actions, corresponding to coloring one of
the edges eg; or e15 one of gray, green, or purple.

Once player one has chosen their action, player two must select the unselected edge, and color
it one of gray, green, or purple. For this tiny two-edge graph, this creates a terminal state where
all edges are colored, the game is over, and the terminal state must be adjudicated. There are
3Fl = 32 = 9 terminal states. We adjudicate each using the three different adjudicators described
in the previous Section. Shown in Fig. 4| are the results for all nine terminal states for the three
solvers for the choices of game parameters ¢, = 350ns and ¢ = 1/2. We see that for this game
graph and choice of parameters, none of the terminal states is near the ¢ = +1/2 draw boundaries,
and all three solvers agree on the adjudication of all terminal states.

(a)
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Figure 3: (a) The three-vertex two-edge (|V| = 3, |E| = 2) path graph Pj is the smallest graph
where one player can win. There are 4/%! = 42 = 16 possible game states, 3/¥| = 32 = 9 terminal
states, 3| F/| = 6 possible actions, and |E| = 2 total moves per game (one per player). (b) The
entire game tree, showing game progression from initial state S = [0, 0] on the left, to player one
making one of six possible moves (middle), to player two making their move, ending up with nine
possible terminal states on the right. Shown are both the graphs and their state representations S.
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Figure 4: (a) Adjudication results for all nine terminal states with anneal time ¢, = 350ns and
adjudication boundary ¢ = 1/2 (shown as dashed green vertical lines). Scores less than —e are wins
for player two. Scores greater than € are wins for player one. Scores with absolute value less than
e are draws. Histogram bins have width 0.01. (b) Energy eigenvalues for terminal state S; = [2, 3]
(shown in inset) as a function of annealing parameter s = t/t, for t, = 350ns, computed by
solving the Schrodinger Equation using the annealing schedule of the D-Wave Advantage2.1.3
system [47]]. At the beginning of the anneal, the system is in the unique ground state of Hp.
At the end of the anneal, the system Hamiltonian Hp is diagonal in the measurement basis. (c)
Occupation probabilities for energy eigenstates as a function of annealing parameter s computed
using the Schrodinger Equation. Near s = 1 the Hamiltonian is diagonal, and the occupation
probabilities of the two ground states | ] 1) and | 1) are both 50%.
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For the example terminal state Sy = [2, 3] shown in Fig. , there are two equally likely de-
generate ground states | JJ1) and | 11} (see Fig. k), which are assignments of spins to vertices
that satisfy both edge constraints. We can then exactly calculate the correlation matrix using the
Schrodinger Equation approach, and also approximate it by drawing samples from both the simu-
lated and quantum annealers. All three approaches give

1.0 1.0 -1.0

C=] 10 10 -10 (6)
-1.0 —-1.0 1.0
with the resultant score
R=Y Coj— Y Co = (Cor+ Co2) — (Cap + Co1) = +2.0 )
J#0 J#2

Since the score is positive, player one wins. To understand intuitively why player one wins,
note that examination of the two ground states shows that in both cases the middle vertex’s spin
aligns with player one’s vertex’s spin, whereas in the case of player two the middle spin is anti-
aligned. Therefore for all samples drawn at s = 1, the sum over the correlations of player one’s
spin will be larger than player two’s.

We can see by inspection of Fig. @ that if player one sets edge eq; to green or edge €;5 to
purple, they are guaranteed at worst a draw. Given either of these first moves, player two forces
a draw by setting the remaining edge to the same color as player one chose. This is the optimal
strategy for both players for this game instance.
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Introducing Frustration: Tangled on K3

Here we examine the Tangled instance 7'( K, (0,2),1/2,350ns). The fully connected graph on
three vertices K3 introduces the possibility of frustration into Tangled. A frustrated system is one
in which not all edge constraints can be met by any assignment of spin directions to the vertices.

Shown in Fig. [5b is an example of a terminal state where the system is frustrated. Recall that
purple links map to antiferromagnetic couplings between spin variables on the vertices. For this
specific terminal state, Eq. (1)) is

H(t) = D(t/ta)Hp + T (t/t2)Hp ®)
Hp = —0y —of — 03, Hp=+o050] +0505 +0705 )

Frustrated quantum magnets can exhibit an effect called order-by-disorder [48, 49,150, 51,152,
53, 54]. This effect arises from terms in the Hamiltonian that allow tunneling between states (such
as the transverse term in Eq. (I))) lifting classical degeneracies and increasing the probability of
being in specific classically degenerate states over others (which is the origin of the ‘order’ in
order-by-disorder). This effect will be very important in gaining an intuition for why the adjudica-
tion process in Tangled is difficult to classically simulate (for an introduction to order-by-disorder
relevant for Tangled, see [41]).

The terminal state in Fig. [Sp has a ground state manifold containing six classically degenerate
ground states. Shown in Fig. [5k is the adjacency matrix for these six states, where the entries are 1
if the states are separated by one spin flip and O otherwise.

(@) (b)

(c)

LTy T Ty 1Ty 1L 1T | ITT)

0 0 1 0 1 0
0 0 1 0 0 1
1 1 0 0 0 0
0 0 0 0 1 1
1 0 0 1 0 0
0 1 0 1 0 0

Figure 5: (a) The 3-vertex 3-edge complete graph on three vertices K3, with state explicitly shown
as functions of edge values in lexical order. (b) The terminal state Sp = [3, 3, 3]. (c) The adjacency
matrix for the six classically degenerate ground states for this terminal state.
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All of the ground states are one spin flip away from two others. In this case, there is no
symmetry breaking and therefore no order-by-disorder, and all ground states should be equally
populated. Unbiased sampling using simulated annealing should give the same result as the two
quantum approaches. This is what we observe (shown in Fig. [f] are the results of adjudication on
all terminal states, showing full agreement between the three approaches).

We can, like in the case of Ps, enumerate all terminal states and find optimal gameplay strate-
gies by observation (see [S5]). The optimal play is for red to first color e;2 purple or ey green,
which guarantees red at worst a draw. Blue then forces a draw by either playing e, green or ey,
purple, making red’s last move not change the outcome.
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Figure 6: (a) Adjudication results for all 3”| = 3% = 27 terminal states of K3 for all three solvers,
with anneal time ¢, = 350ns and draw boundary ¢ = 1/2, with the state Sy = [3,3, 3] with
score ~ 0 explicitly shown. (b) Energy eigenvalues (obtained from the Schrodinger Equation) for
the terminal state Sr = [3, 3, 3] (shown in inset) as a function of annealing parameter s = t/t,.
(c) Occupation probabilities for S = [3,3, 3] from the Schrodinger Equation as a function of
annealing parameter s = ¢/t,. All six classically degenerate ground states have the same (1/6)
probability in the s = 1 limit, as in this case all six states are symmetric (see Fig. [5k).
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Order-by-Disorder: Tangled on the Diamond Graph

While K3 has frustrated terminal states, this didn’t lead to any interesting effects. Here we look
at a slightly bigger graph, the diamond graph K4 — e, which is the fully connected graph on four
vertices with one edge removed (see Fig. ). This graph has 3/l = 3% = 127 terminal states.
Specifically we examine the 7'( K, — e, (0,2),1/2,350ns) instance.

This game instance has something new — terminal states that adjudicate to different values when
using simulated annealing versus the two quantum approaches. As an example of this, consider
the terminal state Sy = [1, 2,2, 2, 3] shown in Fig. [7b. For this terminal state, Eq. () is

H(t) =T(t/ta)Hp + T (t/ta)Hp (10)
Hp=—0y —0f —05 —05, Hp=—0305 —0,0;,— 0105 + 0505 (11)

giving a ground state manifold of six states (| {l)), | LT, | S0, | 1), | T141), and
[ 1111), see Fig. [Bp).

If all six ground states are equally likely, we can exactly calculate the score for this case. The
result is +4/3, which is what we obtain using the simulated annealing adjudicator (see Fig. ).

This is not the score we get for this state using the two quantum approaches — we instead get
scores of +2. The reason for this is that this instance exhibits order-by-disorder, which changes
the relative occupation probabilities of the classically degenerate ground states (see Fig. [/c and
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Figure 7: (a) The 4-vertex 5-edge diamond graph, with state explicitly shown as functions of edge
values in lexical order. (b) The terminal state St = [1,2, 2,2, 3]. (c) The adjacency matrix for the
six degenerate ground states for this terminal state. Unlike K3, we see here that | || 1]) and | 71/ 71)
are connected by a single spin flip to two other states, whereas the others are only connected to one
other state.
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Fig.[8c). With these new probabilities we can again calculate the score analytically and we obtain
+2. Note that the quantum annealer reproduces this result (Fig. [8b).

In this case, and in all of the cases for the diamond graph with choices of game parameters used
here where this effect occurs, the difference in scores between adjudicators doesn’t change the
outcome of the game. Even though we are seeing different scores, all three adjudicators agree on
all 127 terminal states. While not as obvious as the previous P; and K5 graphs, it is straightforward
to find optimal play strategies for this game instance that force draws.
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Figure 8: (a) Adjudication results for all 3/¥| = 3> = 127 terminal states of the diamond graph for
all three solvers, with anneal time ¢, = 350ns and adjudication boundary ¢ = 1/2. (b) Same data,
but with change of axes scales, showing S = [1,2,2,2, 3] in the inset. This state adjudicates to
+4/3 using simulated annealing, and +2 using both Schrodinger Equation and quantum anneal-
ing approaches (all wins for red). (c) Energy eigenvalues from the Schrodinger Equation for the
terminal state S = [1,2,2, 2, 3] (shown in inset) as a function of annealing parameter s = t¢/t,.
(d) Occupation probabilities for the same state obtained from the Schrodinger Equation, showing
preferential occupation of | [[1]) and | T1/71) (each p = 1/4) versus the other classically degen-
erate ground states (each p = 1/8).
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Adjudication Errors: Tangled on The Barbell Graph

Here we examine gameplay on the barbell graph Bs (Fig. @a), which has |V| = 6 vertices and
|E| = 7 edges, using the Tangled instance T'( Bs, (0,4),1/4, 350ns). There are 4/l = 47 = 16, 384
game states and 3Bl = 37 = 2,187 terminal states, one of which is shown in Fig. @) There are
3|E|] = 21 possible actions, and |E| = 7 total moves per game (four for red, three for blue).
The number of terminal states is small enough to adjudicate via enumeration for all three of our
adjudication strategies. The results of this are shown in Fig. [I0p.

While the Schrodinger Equation and quantum annealing adjudication results agree for all ter-
minal states, the simulated annealing solver disagrees with both for 36 out of the 2, 187 ( ~ 1.7%)
possible terminal states. This reward corruption is deterministic and its details are shown in Ta-
ble[Il We examined these states and found that all of them contained frustration of one or both of
the triangles in the barbell graph, and that the order-by-disorder effect we saw in the last Section
quantitatively explained the disagreement in every case. In the example terminal state in Fig. O, it
is easy to verify that both triangles are frustrated. This frustration leads, in this case, to an 18-fold
classical ground state degeneracy (3 from the left triangle times 3 from the right triangle times two
because of the T=/ symmetry of the Ising Hamiltonian).

This is one of the states where simulated annealing returns an incorrect adjudication. Assuming
unbiased sampling, the score can be analytically calculated to be —4/9, which is the value returned
by simulated annealing (see Fig.[I0p). We can see via solving the Schrodinger Equation that the
probabilities of the 18 ground states are altered for the quantum cases (Fig. [[0{d), returning a score
of +1/2. This is also the value returned by the quantum annealer.

(a)

(b)

S.=[3,223,23,2

Figure 9: (a) The 6-vertex 7-edge barbell graph, with state explicitly shown as functions of edge
values in lexical order. (b) The terminal state S7 = [3,2,2, 3,2, 3, 2].
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Figure 10: (a) Adjudication results for all 3/l = 37 = 2, 187 terminal states of the barbell graph
for all three solvers, with anneal time ¢, = 350ns and adjudication boundary ¢ = 1/4. Simu-
lated annealing generated 36 states (~ 1.7%) with incorrect adjudication, whereas the Schrodinger
Equation solver matched the quantum annealing adjudication for all terminal states. (b) Same data,
but with change of axes scales, showing S7 = [3,2, 2, 3,2, 3, 2] in the inset. This state adjudicates
to —4/9 using simulated annealing (win for blue), and +1/2 using both Schrodinger Equation
and quantum annealing approaches (win for red). (c) Energy eigenvalues from the Schrodinger
Equation for the terminal state Sp = [3, 2,2, 3,2, 3, 2] (shown in inset) as a function of annealing
parameter s = t/t,. (d) Occupation probabilities for the same state obtained from the Schrodinger
Equation, showing splitting of occupation probabilities among the ground state manifold.
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Unlike for the diamond graph, here order-by-disorder not only changes the value of the score,
but it also changes the result of the adjudication for some of the terminal states. The simulated
annealer scores this particular terminal state for player two (R = F'(Sy) = —1), which is incorrect.
The correct adjudication for this state is a win for player one (R = F'(Sr) = +1; recall the ground
truth is provided by the quantum annealer).

Here we find our first instance of reward corruption and have quantified its cause. Specifically,
if we use simulated annealing to approximate R = F'(S7) for Tangled, we find 36 out of 2,187
terminal states where R # R, where the error mis-specification is deterministic and caused by the
classical algorithm we used not taking into account order-by-disorder effects.

Simulated Annealing
Draw Red Blue
¢ Draw — 6 10
Quantum - °/ 10 — 2
Annealing
Blue 6 2 —

Table 1: Reward corruption for the Barbell graph. There are four states where simulated annealing
reverses the sign on the reward +1 <> —1, and 32 where reward is mislabeled 0 <+ £1.
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Increasing Adjudication Error Fraction: Tangled on The 3-Prism

For the Barbell graph, simulated annealing fails for a small fraction of possible terminal states.
Here we investigate a slightly bigger graph with a larger fraction of states where simulated anneal-
ing gives incorrect answers.

The 3-Prism Y; (Fig.[11}) has |[V| = 6 vertices and |E| = 9 edges. We investigate the Tangled
instance T(Y3, (0,4),0.125,100ns). There are 4%/ = 4° = 262,144 game states and 3%l =
3% = 19,683 terminal states, one of which is shown in Fig. . There are 3|E| = 27 possible
actions, and |E| = 9 total moves per game (five for red, four for blue). We enumerated reward
for all terminal states using both hardware quantum annealing and simulated annealing. Simulated
annealing incorrectly adjudicated 2, 175 out of 19,683 (~ 11.1%) terminal states (see Table [2)).

(a)

(b)

$,=03,3,1,3,3,2,2,2,3]

Figure 11: (a) The 6-vertex 9-edge 3-Prism, with state explicitly shown as functions of edge values
in lexical order. (b) The terminal state St = [3,3,1,3,3,2,2,2,3].

Simulated Annealing
Draw Red Blue
¢ Draw — 931 116
Quantum =% 2y 115 — 39
Annealing
Blue 938 36 —

Table 2: Reward corruption for the 3-Prism graph. There are 75 states where simulated annealing
reverses the sign on the reward +1 <> —1, and 2, 100 where reward is mislabeled 0 <> +1.
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Even More Errors: Tangled on The Moser Spindle

For the Barbell and 3-Prism graphs, the simulated annealing approach to adjudication fails for
~ 1.7% and ~ 11.1% of possible terminal states respectively. Here we investigate a bigger graph
with a larger fraction of states where simulated annealing gives incorrect answers.

The Moser Spindle M; (Fig. [12p) has |V| = 7 vertices and |E| = 11 edges. This graph
contains 3-, 4-, and 5-cycles that can exhibit frustration depending on the bond configuration. We
investigate the Tangled instance T'(Mz, (2,4),0.05,40ns). There are 4%l = 41 = 4 194,304
game states and 3/F1 = 31 = 177,147 terminal states, one of which is shown in Fig. . There
are 3|E| = 33 possible actions, and |E'| = 11 total moves per game (six for red, five for blue). We
adjudicated all terminal states with both hardware quantum annealing and simulated annealing.
Simulated annealing incorrectly adjudicated 43, 965 out of the 177,147 (~ 24.8%) terminal states.

S=Je €04 €0s’ €127 €157 €030 €0 €34, €55, €

01’ 12’ 715° 723’ 725’ T34’ T35 736’ e46]

$.=103,3,2,2,1,2,2,3,3,2,2]

Figure 12: (a) The 7-vertex 11-edge Moser Spindle, with state explicitly shown as functions of
edge values in lexical order. (b) The terminal state S+ = [3,3,2,2,1,2,2,3,3,2,2].

Simulated Annealing
Draw Red Blue
¢ Draw — 17,061 2,743
Quantum = T 636 — 2,200
Annealing
Blue 17,083 2,242 —

Table 3: Reward corruption for the Moser Spindle. There are 4, 442 states where simulated anneal-
ing reverses the sign on the reward +1 <> —1, and 39, 523 where reward is mislabeled 0 <> £1.
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We now have three game instances with systematic reward corruption, one where the fraction
is very small (the Barbell graph), one where the fraction is larger (the 3-Prism), and one where
the fraction is even larger (the Moser Spindle graph). In the next Section, we introduce game-
playing agents for Tangled, how we compare their relative capabilities, and quantify the effect of
systematic adjudication errors on the performance of agents trained to play this game.
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Agents

There are many possibilities for building game-playing agents for this type of game. There are
three that we will focus on here. All of these are of the sort described in Fig.
Random Agents

The first are agents that make random action choices at every move. Let A(g) denote the set of
available actions a in state S. The random policy Tandom 18 defined by:

3 L_ ifae A(S
7T-ramdom(a|5) = {A(S)| a ( )

o 12
0 ifad AS) (12

Monte Carlo Tree Search Agents

The second are agents that use online Monte Carlo Tree Search (MCTS) [56 57] to select actions.
MCTS is a heuristic search algorithm that builds a search tree incrementally and asymmetrically,
focusing computational resources on the most promising paths.

We use the Upper Confidence Trees (UCT) policy [37] during the selection phase with ex-
ploration parameter ¢ = 2 and the random policy Eq. [12| during the simulation phase. MCTS is
parametrized by the number of rollouts M per action selection, and requires one terminal state
adjudication per rollout. Because of this, our MCTS agents are also parametrized by the choice of
adjudicator and its parameters.

We write MCTS[M, H] to denote an online MCTS agent using M rollouts with terminal
state adjudicator H € {SFE,SA,QA}, where SFE is the Schrodinger Equation, S A is simulated
annealing, and (A is quantum annealing using the D-Wave Advantage2 system (parameters of
each of these solvers are suppressed in this notation, but will be made explicit when we use this
policy in what follows).

The MCTS policy is

- G )1/
mycrs(alSir) = —20)
>, N(S, )1/

where m);crs(alS; 7) is the probability of selecting action a from state S, N(S, a) is the number
of times action a was visited during MCTS rollouts from state S,and T is a temperature parameter
controlling how deterministic the algorithm is. In our implementation we chose 7 = 0 for MCTS
agents, which reduces the MCTS policy to

(13)

mvers(alS, T = 0) = argmax N(S, a) (14)

AlphaZero Agents

The third are AlphaZero agents [58]]. For fully observed zero-sum two-player games with terminal
states, AlphaZero is a powerful and simple (although computationally expensive) algorithm for
producing high-quality agents.
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AlphaZero employs a self-play reinforcement learning framework that combines MCTS with
a neural net fg(g) = (p,v), where 0 are the neural net’s parameters, and 7 and v are action prob-
abilities and value respectively for a given state S. The algorithm iteratively improves through
self-play, where moves are selected via MCTS guided by the Polynomial Upper Confidence Tree
(PUCT) policy [59,160] with exploration parameter ¢ = 2. During self-play, the algorithm performs
My MCTS rollouts per move and selects moves according to the MCTS policy Eq.[I3] During the
competitive phase, the number of MCTS rollouts can be different and is denoted M;. The temper-
ature parameter 7 decreases from initial exploration (7 = 1) for the first P moves to deterministic
play (r = 0) for the last |E| — P moves during endgame, where P is a training parameter. We
fix P = |E| — 2, so that only the last two moves use 7 = 0. As in pure MCTS, the terminal state
adjudicator H is a parameter of the training process.

Training data consists of (state S, MCTS policy mycrs, game outcome z) tuples collected
from self-play, which are used to optimize the neural network parameters 0 via gradient descent
with typical learning rates of 1073 to 10~%. For Tangled, z € {0, +1, —1}, and for sufficiently large
game graphs will be difficult to compute if not using D-Wave hardware if the quantum supremacy
claim is valid. The training data, when H # (A, should contain adjudication errors that will
corrupt the training process.

The neural network architecture we use here is a dual-head (policy and value outputs) deep
residual convolutional architecture inspired by ResNet [61], consisting of multiple residual blocks
with skip connections. ResNet architectures were originally designed for computer vision tasks.
They are effective in the AlphaZero context, likely because most board game states are designed to
be processed visually by people, but games like Tangled might benefit from architectures designed
for graph inputs. It is possible that other architectures could be interesting to try in the Tangled
context but we do not pursue this here.

We distinguish two different phases for AlphaZero agents. The first phase is the training phase,
where the system’s neural net is trained. Training requires setting the following parameters: the
neural net, parametrized by g; the number of MCTS rollouts per action selection during self-
play and competitive phases M, and M, respectively; the terminal state adjudicator H and its
parameters; the number of iterations performed N;;; the number of complete self-play games to
simulate during one iteration N.,,; an Elo update threshold U for accepting a new neural net after
competitive play; and the number of games to play during the competitive phase N,. Here we fix
My = 100, My = 10, Ny = 50, N¢ps = 3,200, U = 1, and N, = 2, 368. Implementation details
and parameters used are available upon request.

Once the training process is complete and we are ready to use an AlphaZero agent, we need
to specify the number of MCTS rollouts to use per action selection. In the case of AlphaZero,
the rollout action selection probabilities are guided by the trained neural net. We denote a trained
AlphaZero agent AZ[M, H] where M is the number of MCTS rollouts performed during use of
the agent, and H is the adjudicator used to train the agent.
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Agent Performance

Barbell Graph

The Tangled instance 7'(Bs, (0,4),1/4,350ns), where Bj is the Barbell Graph, contains 36 out
of 2,187 ( ~ 1.7%) terminal states where simulated annealing corrupts reward (see Table |I)).
Intuitively, this should make agents trained using the simulated annealing adjudicator perform
slightly worse than those trained using quantum annealing.

We can estimate the difference in expected win rates between agents trained with or without
corrupted reward, under the assumption that all terminal states are equally likely to be seen as
endgame states. Define effective win rate using the true reward as F,, = p,, + 0.5p; where p,,
and p, are win and draw probabilities respectively, and effective win rate in the presence of reward
corruption as £ = p¢ + 0.5p where p{, and p§ are win and draw probabilities achieved using
agents trained on the corrupted reward. Then the difference in effective win rates £, — E; =
Pw — P + 0.5(pa — p5) = pi1e—1 + 0.5 % poeyy. For the Barbell graph, this is F,, — E ~
4/2187 4 0.5 % 32/2187 ~ 0.9%. Note that depending on the structure of both the agents and the
game, this estimate may not hold. As an example, an agent that plays preferentially to end up in
some small subset of terminal states will not see the statistics of all the terminal states and could
perform much better or much worse than this.

Here we empirically investigate differences in performance of a set of agents by conducting
a round-robin tournament. We distinguish between the adjudicator used to generate actions (the
H parameters in the agents) and the adjudicator used to adjudicate the result of gameplay (which
is fixed to be hardware-based quantum annealing, as by definition this is the ground truth for
adjudication of Tangled). This implements the concept in Fig. 2] where ground truth evaluation of
reward occurs from the environment (in our case, via hardware-based quantum annealing), whereas
both training the agents (in the case of AlphaZero) and ‘thinking about what moves to make’
(online MCTS rollouts during game play for both MCTS and AlphaZero) is done internally inside
the agents, where the quantum annealing-based agents are of type (a) and the simulated annealing-
based agents are of type (b).

In each agent vs. agent competition, we played 4,992 games with the first agent as red, and

Player | MCTS[100,SA] | Random | MCTS[10,SA] | MCTS[10,QA] | MCTS[100,QA] | AZ[10,SA] | AZ[10,QA] | AZ[100,SA] | AZ[100,QA] | Elo
Random | 117-9004-863 | — | 632-6692-2660 | 549-6910-2525 | 12-9059-913 | 28-9413-543 | 0-9393-501 | 46-9486-452 | 0-9493-491 | 5152412
MCTS[10,SA] | 559-5674-3751 | 6692-632-2660 — 2668-3145-4171 | 236-5788-3960 | 139-7150-2695 | 0-6976-3008 | 174-7299-2511 | 0-7453-2531 | 788.8 £ 1.2
MCTS[10,QA] | 1116-5270-3598 | 6910-549-2525 | 3145-2668-4171 — 220-5804-3960 | 292-7211-2481 | 0-7065-2919 | 366-7238-2380 | 0-7524-2460 | 8024 & 1.2
MCTS[100,SA] 9004-117-863 | 5674-559-3751 | 5270-1116-3598 | 1421-1641-6922 | 5-2776-7203 | 0-2598-7386 | 11-2907-7066 | 0-2625-7359 1000.0
MCTS[100,QA] | 1641-1421-6922 | 9059-12-913 | 5788-236-3960 | 5804-220-3960 235-2737-7012 | 4-2821-7159 | 301-2815-6868 | 0-2719-7265 | 10133+ 1.2
AZ[10,SA] 2776-5-7203 | 9413-28-543 | 7150-139-2695 | 7211-292-2481 | 2737-235-7012 0-24-9960 0-0-9984 0-0-9984 | 1104.6 & 1.2
AZ[10,QA] 2598-0-7386 | 9393-0-591 | 6976-0-3008 | 7065-0-2919 | 2821-4-7159 24-0-9960 0-0-9984 0-0-9984 | 1106.0 & 1.2
AZ[100,8A] 2907-11-7066 | 9486-46-452 | 7299-174-2511 | 7238-366-2380 | 2815-301-6868 | ~ 0-0-9984 0-0-9984 0-0-9984 | 1106.1 & 1.2
AZ[100,QA] 262507359 | 9493-0-491 | 7453-0-2531 | 7524-0-2460 | 2719-0-7265 0-0-9984 0-0-9984 0-0-9984 11106 + 1.2

Table 4: Tournament results for the Barbell graph. Each cell shows W-L-D (Wins-Losses-Draws)
from the perspective of the row player against the column player. MCTS[100,SA] was used as the
Elo = 1000.0 baseline.
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4,992 games with the first agent as blue, for a total of (9 choose 2) * 4,992 * 2 = 359,424 games
played. We evaluated Elo scores and their errors using the process described in Appendix A. The
results are shown in Table [l

The results are displayed so that agents with all parameters identical except for whether they
are type (a) (having internal access to QC) or type (b) (not having such access — see Fig. [2) are
shown in adjacent rows separated by lines. Comparing the four cases we tried gives Elo differences
of +13.6+1.7,+13.3£1.2, +1.4£1.7, and = +4.5£1.7 for MCTS[10], MCTS[100], AZ[10], and
AZ[100] respectively, all favoring agents with internal access to QC. These advantages translate
to increases in expected mean win rate E,, — E¢ of 2.0 £ 0.2%, 1.9 + 0.2%, 0.2 £ 0.2%, and
0.6 +0.2% (recall that if all terminal states were visited equally likely by these agents the expected
increase in mean win rate was 0.9%).

3-Prism

The Tangled instance 7'(Y3, (0,4),0.125, 100ns), where Y3 is the 3-Prism graph, contains 2, 175 out
of 19, 683 ( ~ 11.1%) terminal states where simulated annealing corrupts reward. Of these, 75 give
the win to the wrong player, and 2, 100 are terminal states where one of the judges rules a draw and
the other rules a win for one of the two players (Table [2)), giving an estimated increase in mean win
rates assuming equal visitation of terminal states of F,,— E¢, ~ 75/19,683+0.5%2,100/19, 683 ~
5.7%.

We repeated the round-robin tournament using the same format as used for the Barbell graph.
The results are shown in Table [ Elo score mean differences are now +33.3 + 1.7, +25.8 1.2,
+37.5 £ 1.7, and +49.0 £ 1.7 for MCTS[10], MCTS[100], AZ[10], and AZ[100] respectively, all
favoring agents with internal access to QC. These advantages translate to expected mean increases
in B, — E of 4.8 £0.2%, 3.7 £ 0.2%, 5.4 £ 0.2%, and 7.0 & 0.2%.

Player | MCTS[100,SA] |  Random | MCTS[10,SA] | MCTS[10,QA] | MCTS[100,QA] | AZ[10,SA] | AZ[10,QA] | AZ[100,SA] | AZ[100,QA] | Elo
Random | 35-7848-2101 | — | 403-5524-4057 | 363-6146-3475 | 5-8720-1259 | 6-8587-1391 | 0-8836-1148 | 6-8868-1110 | 0-9137-847 | 598.0 4 1.2
MCTS[10,SA] | 116-4814-5054 | 5524-403-4057 — 1703-2327-5954 |  55-4990-4939 | 35-5491-4458 | 0-6409-3575 | 16-6489-3479 | 0-6666-3318 | 8153 £ 1.2
MCTS[10,QA] | 210-3434-6340 | 6146-363-3475 | 2327-1703-5954 — 68-4789-5127 | 58-4797-5129 | 0-5818-4166 | 50-5501-4433 | 0-6246-3738 | 848.6 & 1.2
MCTS[100,5A] 7848-35-2101 | 4814-116-5054 | 3434-210-6340 | 542-947-8495 | 31-1221-8732 | 14-1750-8220 | 54-1835-8095 | 0-1960-8024 1000.0
MCTS[100,QA] | 947-542-8495 | 8720-5-1259 | 4990-55-4939 | 4789-68-5127 — 436-834-8714 | 44-1604-8336 | 602-1181-8201 | 35-2038-7911 | 1025.8 £ 1.2
AZ[10,SA] 1221-31-8732 | 8587-6-1391 | 5491-35-4458 | 4797-58-5129 | 834-436-8714 0-127-9857 0-0-9984 | 0-2429-7555 | 1041.8 £ 1.2
AZ[10,QA] 1750-14-8220 | 8836-0-1148 | 6409-0-3575 | 5818-0-4166 | 1604-44-8336 | 127-0-9857 1487-0-8497 | 0-68-9916 | 1079.2 = 1.2
AZ[100,SA] 1835-54-8095 | 8868-6-1110 | 6489-16-3479 | 5501-50-4433 | 1181-602-8201 | 0-0-9984 | 0-1487-8497 0-1744-8240 | 1051.1 £ 1.2
AZ[100,QA] 1960-0-8024 | 9137-0-847 | 6666-0-3318 | 6246-0-3738 | 2038-35-7911 | 2429-0-7555 | 68-0-9916 | 1744-0-8240 1100.1 £ 1.2

Table 5: Tournament results for the 3-Prism graph. Each cell shows W-L-D (Wins-Losses-Draws)
from the perspective of the row player against the column player. MCTS[100,SA] was used as the
Elo = 1000.0 baseline.
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Moser Spindle

The Tangled instance 7'(M7, (2,4),0.05,40ns), where My is the Moser Spindle graph, contains
43,965 out of 177,147 ( ~ 24.8%) terminal states where simulated annealing corrupts reward (see
Table [3), giving an estimated increase in mean win rates assuming equal visitation of terminal
states of £, — ES ~ 4,442/177,147 4+ 0.5 % 39,523/177,147 ~ 13.7%.

We repeated the round-robin tournament using the same format as used for the Barbell and
3-Prism graphs. The results are shown in Table [6] Elo score mean differences are +79.1 + 1.7,
+95.2 £ 1.2, 4984 £ 1.7, and +108.4 &+ 1.7 for MCTS[10], MCTS[100], AZ[10], and AZ[100]
respectively, in each case favoring agents with internal access to QC. These advantages translate to
expected mean increases in £, — £ of 11.2+0.2%, 13.4 +0.2%, 13.8 £0.2%, and 15.1 £ 0.2%.

Analysis of Results

For the graph instances studied here, we find the following results:

* In all cases, agents learning from true reward outperformed agents learning from corrupted
reward. The magnitude of the effect is consistent with roughly equal visitation of terminal
states by the agents. While we used Simulated Annealing as a specific classical approxima-
tion algorithm, we expect the findings here to hold for any algorithm that deterministically
corrupts reward.

* Even in the case where the reward corruption was relatively high (for the Moser Spindle),
agents learning from corrupted reward dramatically outperformed the random agent. This
may be a consequence of the high percentage of mis-specification errors mis-labeling draws,
which are less dangerous than errors assigning the win to the wrong player. This may mean
that taking the draw boundary e to zero, thereby removing draws from the game, may make
the effects of reward corruption much worse.

* With € = 0, the No Free Lunch result [16] indicates that reward corruption of more than
50% of terminal states, given no further information, bounds agents learning from corrupted
reward to be no better than the random agent. It seems plausible we can find such cases.

Player | MCTS[100,SA] |  Random | MCTS[10,SA] | MCTS[10,QA] | MCTS[100,QA] | AZ[10,SA] | AZ[10,QA] | AZ[100,SA] | AZ[100,QA] | Elo
Random | 207-7549-2228 | — | 967-6103-2914 | 725-7307-1952 | 26-9370-588 | 27-8369-1588 | 69252726 | 27-8502-1455 | 4-9543-437 | 6204 £ 12
MCTS[10,SA] | 561-5991-3432 | 6103-967-2914 — 2186-3840-3958 | 293-7324-2367 | 144-7794-2046 | 42-8374-1568 | 86-8025-1873 | 22-8982-980 | 793.9 4 1.2
MCTS[10,QA] | 1025-3628-5331 | 7307-725-1952 | 3840-2186-3958 — 418-7087-2479 | 212-5817-3955 | 93-7814-2077 | 142-5973-3869 | 22-8850-1112 | 873.0 4 1.2
MCTS[100,SA] 7549-207-2228 | 5991-561-3432 | 3628-1025-5331 | 1065-2964-5955 | 641-4478-4865 | 243-5018-4723 | 437-4887-4660 | 89-5805-4090 1000.0
MCTS[100,QA] | 2964-1065-5955 | 9370-26-588 | 7324-293-2367 | 7087-418-2479 899-1666-7419 | 382-4385-5217 | 739-1815-7430 | 170-5616-4198 | 10952 + 1.2
AZ[10,SA] 4478-641-4865 | 8369-27-1588 | 7794-144-2046 | 5817-212-3955 | 1666-899-7419 10-3086-6888 | 0-745-9239 | 0-2664-7320 | 1124.8 + 1.2
AZ[10,QA] 5018-243-4723 | 9252-6-726 | 8374-42-1568 | 7814-93-2077 | 4385-382-5217 | 3086-10-6888 1278-0-8706 | 0-256-9728 | 12232+ 1.2
AZ[100,SA] 4887-437-4660 | 8502-27-1455 | 8025-86-1873 | 5973-142-3869 | 1815-739-7430 | 745-0-9239 | 0-1278-8706 0-2734-7250 | 1149.9 4 1.2
AZ[100,QA] 5805-89-4090 | 9543-4-437 8982-22-980 | 8850-22-1112 | 5616-170-4198 | 2664-0-7320 | 256-0-9728 | 2734-0-7250 12583 4+ 1.2

Table 6: Tournament results for the Moser Spindle graph. Each cell shows W-L-D (Wins-Losses-
Draws) from the perspective of the row player against the column player. MCTS[100,SA] was
used as the Elo = 1000.0 baseline.
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Pushing into the Advantage Regime: The Cy, Fullerene Graph

The Cgo Fullerene Graph, or Buckyball, is a 3-regular planar graph with |V'| = 60 vertices and
|E| = 90 edges, corresponding to the carbon structure of buckminsterfullerene [62]]. This graph
has been advanced as a potential testbed for quantum simulation of the sort relevant for Tangled,
due to the interplay of degeneracy and quantum fluctuations of the sort that we saw defeat simulated
annealing and may defeat other more powerful algorithms as well [41]. Other Fullerenes can be
implemented if increased scale is required for quantum advantage, such as C, C4, or C'30, which
have all been observed in atmospheric aerosols [63].

As for Cg’s suitability as a human-playable game board, note that the state space is 4/F1 =
4% ~ 10°4, which is in the ballpark of chess (~ 10%3) but much smaller than Go (~ 10'™), and
the number of moves per game (|E| = 90, 45 for each player) is also reasonably human-playable
(chess has ~ 40, whereas Go has ~ 200). One could imagine playing on a physical bucky ball,
where touching the edges changes their color; playing against an agent trained using a quantum
computer that (allegedly) can’t be beat might be a compelling experience.

We chose the Tangled instance 7'(Cgp, (0, 54), 0, 40ns), where vertices 0 and 54 have distance
9, which is the diameter of this graph (see Fig.[I3)). Playing Tangled on this instance should be
challenging for any classical approximation algorithm. Setting ¢ = 0 makes the possible reward
values R € {41, —1} (no draws are allowed).

For this instance, generating a lookup table by enumerating terminal states is not an option
(there are 3%° ~ 10%® of them). Instead, during the agent training phase, we evaluate the reward
associated with terminal states and then discard it.

We trained two AlphaZero agents with identical parameters, except the first was trained on

Figure 13: The 60-vertex 90-edge Cy Fullerene Graph, with player 1 vertex (vertex 0) colored red
and player 2 vertex (vertex 54) colored blue.
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Player | Random | AZ[100, SA]| AZ[100, QA]|  Elo

Random — 4-996 0-1000 1000
AZ[100, SA] | 996-4 — 15-985 1718 £ 8
AZ[100, QA]| 1000-0 985-15 — 2388 + 8

Table 7: Tournament results for the Cgy graph. Each cell shows W-L (Wins-Losses) from the
perspective of the row player against the column player. The random agent was used as the Elo =
1000.0 baseline.

true reward computed using the D-Wave Advantage2.1.4 system, and the second was trained on
corrupted reward (using simulated annealing to adjudicate terminal states). We used training pa-
rameters My, = 100, M; = 10, N;; = 10, Ng,s = 320, U = 1, and N, = 320. Note that
training effort here was substantially lower than previous experiments due to time constraints. We
are continuing to train agents on both true and corrupted reward over the course of the next three
months.

We ran a round-robin tournament with both of them and a random agent, where each pair of
agents played N = 1,000 games against each other, for a total of 3,000 games played. The results
are shown in Table [7

The agent trained on true reward achieved a mean Elo difference of +670 £ 11 over the agent
trained on corrupted reward, which, if terminal states were visited equally, implies a reward cor-
ruption rate of 48 4 2% — implying that in this regime simulated annealing assigns incorrect labels
nearly half the time, close to the regime where its performance is expected to be no better than the
random agent. Note that this is likely not the entire story, as the AlphaZero agent trained using
corrupted reward trounces the random agent in 1-1 competition.
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D. Classical Benchmarking

None of the current domains where quantum advantage has been claimed (including random cir-
cuit sampling [18]], boson sampling [19], and D-Wave quantum simulation [20]) are universally
accepted. In all cases, sophisticated classical algorithms may be able to reproduce the obtained
results using reasonable resources.

This state of affairs will likely persist for some time. Our view is that eventually some domain
will emerge where quantum advantage will be clear. It will likely be a type of quantum simulation,
where the quantum computer experimentally demonstrates clear signatures of volume-law scaling
of entanglement entropy [64)], and the interesting properties of the system being simulated with
the quantum computer critically depend on this (this should defeat approximation methods such as
tensor networks that are limited to simulating systems where entanglement entropy has area-law
scaling). Until such time, whenever any claim is made, researchers will target it and attempt to
use whatever structure it has to devise clever special-purpose conventional algorithms to enable
classical simulation and thereby try to refute the claim. Current quantum computational systems
are just starting to be powerful enough to support reasonable claims, but they are not yet powerful
enough to make these claims ironclad.

In the case of the D-Wave claim, the best reference to the current state of affairs is found here
[44]]; we refer the reader to this article for arguments and links to results.
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E. Viability
The Problem Statement introduced at the beginning of this report is the following:

In the case where reward is the output of a quantum simulation, we aim to (a) discover what
conditions are sufficient for RL agents with access to QC to be categorically superior to agents
without such access, and (b) solve a set of industrially important challenge problems requiring
design of quantum systems using such agents.

To succeed at (a), we need the following:

1. Access to a quantum computing system that exhibits quantum advantage in the com-
putation of the reward signal the RL agent uses. In the work described here, there is a
reasonable claim that this is true, but it is possible that the claim will be overturned. The
general strategy outlined here can be applied to any quantum advantage claim domain.

2. Reward corruption due to classically approximating the function where quantum ad-
vantage is claimed must lead to dramatically reduced agent performance. Here we
present empirical evidence that this is true for both MCTS and AlphaZero agents when the
reward corruption is deterministic and there are no further simplifying assumptions on which
states are corrupted. In addition, there are known information-theoretical results that are use-
ful here [16].

3. Agent performance upper bounds for error rates generated by running the best known
classical algorithms must be lower than the performance achieved by an agent trained
using true reward. This type of bounding argument is required to rule out better learn-
ing algorithms learning from corrupted reward beating poorer learning algorithms learning
from true reward. Computing and using such bounds is a central strategy in much of the
quantum machine learning literature [12, |13} 14} [15]], but deriving analogs for general quan-
tum simulation is a much harder problem. For the simulation of a quantum system to be a
domain of quantum advantage, its entanglement entropy should exhibit volume-law scaling
to defeat methods that approximate entanglement as local, including tensor networks (this
is at the heart of questions about whether the D-Wave quantum advantage claim will hold
up). Whether such volume-law scaling is expected in a general quantum system is a difficult
problem in practice, as most quantum systems of commercial interest are open quantum sys-
tems with complex environments, and the types of many-body quantum effects necessary to
defeat classical methods may be rare.

To succeed at (b), success at (a) is a necessary condition. In addition, we must identify and solve a
set of industrially relevant challenge problems where the following hold:

1. Each problem in the challenge set has reward of the sort required for (a). This requires
each quantum system identified in each challenge problem to have special properties that
defeat specialized techniques for classical simulation of quantum systems, such as tensor
networks, and these special properties must be directly connected to the ‘desirable proper-
ties’ encoded in reward. The reward must be computable in a domain of quantum advantage
for an existing or near-term quantum computer.
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2. We must implement an agent, for example an AlphaZero agent, whose performance on
each of these challenge problems empirically beats upper bounds for any agent trained
using the best known classical approximations for the reward functions in question.
In Phase 1 of this project, we have implemented all of the infrastructure necessary to train
AlphaZero agents given a general reward signal, and therefore should be (modulo lack of
computing resources) prepared to implement such agents.

In Phase 1, we built the infrastructure necessary to design, implement, and test RL agents learning
from arbitrary reward signals. We designed a special case where a specific type of quantum sim-
ulation is required to compute reward cast as win/loss/draw for a novel type of game. We applied
our infrastructure to this game, and found that a reasonable classical approximation algorithm
devastates an agent’s ability to learn to play the game well. We identified at least one physical
mechanism (order-by-disorder) that causes reward corruption in this case.

We then trained an AlphaZero agent on an instance of this game (on the Cy Fullerene Graph)
in a regime proposed as a benchmark for quantum simulation. We demonstrated that an AlphaZero
agent trained using simulated annealing for terminal state adjudication does no better than a ran-
dom agent, and the AlphaZero agent trained on true reward soundly defeats both the random agent
and the AlphaZero agent trained on corrupted reward.

These first-stage results are consistent with the project being viable, although there are many
gaps between where we are at and being able to declare success. In the next phase, we will proceed
to using the tools and infrastructure developed to date to identify and solve a set of industrially
important challenge problems requiring design of quantum systems using RL agents.
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F. Novelty

Quantum Circuits as General Function Approximators

The majority of work at the intersection of RL and QC proposes using quantum circuits as replace-
ments for the neural nets used for learning in typical RL scenarios [13} [14} [15)]. This approach
has the same general goal as what we propose here — showing that when there exist conditions of
quantum advantage, these can be translated to building RL agents that are categorically superior to
agents with access to only classical computation.

Instead of replacing neural nets with quantum circuits as general function approximators, we
propose keeping these neural nets as-is and focus quantum advantage specifically into computing
reward. Theoretical results obtained by using quantum circuits in place of neural nets, for exam-
ple for the case when computing reward requires solving the discrete log problem [12, [13], can
be reframed as using those quantum circuits to instead compute reward. This cleanly separates
learning from a reward signal and being able to compute it in the first place, which the approaches
cited above conflate, while maintaining the theoretical separation guarantees obtained by previous
authors.

Using RL to Design Quantum Systems

The closest work we were able to find to the work presented here involves training RL agents
to design molecules with desired properties [65]. In this work, a very similar framework is built
where the authors “... design molecules by sequentially drawing atoms from a given bag and
placing them onto a 3D canvas... we focus on designing stable molecules, i.e. molecules with low
energy I/ € R; however, linear combinations of multiple desirable properties are possible as well”.
This is a special case of what we propose here, as the reward function is the result of a quantum
simulation, and agents learn to design molecules subject to these rewards.
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G. Evidence Supporting Section C (Quantum Advantage)

See Section D.
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H. Evidence Supporting Section D (Classical Benchmarking)

See Section D.
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Appendix A: Computing Elo Scores And Error Bounds

The Elo rating system, developed by Arpad Elo for chess skill assessment [45], provides a method
for calculating relative skill levels in two-player zero-sum games. The system maintains numerical
ratings for each player, updating them after each game based on the outcome and pre-game rating
differences. The expected score for player i against player j is given by F; = 1/ (1410~ F:)/400)
where R; and R; denote the current ratings. Following a game, ratings are updated according to
R = R, + K(S; — E;), where S; € {0,0.5, 1} represents the actual game outcome (loss, draw,
win) and K is a parameter controlling update magnitude, typically ranging from 10 to 40 (we
used K = 32) [66]. The Elo system has found widespread application in diverse competitive
domains including online gaming [67]], sports analytics [68]], and even academic journal rankings
[69]]. Despite its simplicity and popularity, the system has known limitations including lack of
uncertainty quantification and game order dependence, motivating extensions such as Glicko [70]
and TrueSkill [[67]].

Uncertainty Quantification for Elo Scores

Assume P players play a round-robin tournament, where each pair (7, j),7 < j plays N instances
of a zero-sum game with draws allowed. Assume that the (unknown) true Elo score of player ¢
is R;. Furthermore, assume that pre-tournament, all players are assigned Elo scores of 1000, and
assume player 0’s Elo score is fixed to this initial value (Elo scores are relative to a baseline, so
this can be done without loss of generality). Our goal is to choose /N to be large enough so that
the error bounds 0 R; on the post-tournament Elo scores R; = 0 R; are small enough to distinguish
potentially small differences in capability between agents.

Specifically, we seek to find N such that the P players can be ordered by estimated post-
tournament Elo scores ?;, where this is the same as the ordering of the true Elo scores R;. If the
difference between true Elo scores between players i and j is AR;; = R} — R}, we seek N such
that 0 RR; + (SR] < ARW v (Z,])

Examining Each Pair

Assume the pair (¢, j),7 < j play IV games, with observed outcomes (from player i’s perspective)
of W wins, L losses, and D draws (W + L + D = N) and sample proportions p,, = W/N,
P = L/N, and p; = D/N. These are estimators of the true probabilities p,,, p;, and pg.

Assuming the underlying probability distribution is multinomial, the standard errors for each
estimate are SE(p;) = +/pi(1 —pi;)/N where i € {w,l,d}, which are all upper bounded by
SE(p;) = \/1/4N. We therefore know that the true probability estimates are p; = p; = z4/1/4N,
where z = 1.96 provides a 95% confidence interval.

Assuming initial Elo scores of R; and R?;, since Elo conserves the sum of ratings (S;; = R; +
R;), post-round Elo scores are:

/

R; = S;;/2 +2001og,o[(Pw + 0.5P4)/ (D1 + 0.5p4)] (15)

R; = 5ij/2 — 20010g,o[(Pw + 0.5pa) /Pr + 0.5pa)] (16)

38



and the difference between estimated Elo scores is

ARi; = R; — R} = 40010g1o[(hw + 0.5pa) /(71 + 0.5p4)] (17)
Let
By = po + 0.5p4 (18)
E =p+05ps=1—E, (19)
then ) R
AR;; = 400log,y[Ey/(1 — Ey,)] (20)

We are interested in the situation where AR;; is small. This happens near E, =1 /2. Assume
E, =1/2+ €. Then

1
ARy = 40010g,[(1/2 + €)/(1/2 — €)] ~ 400 log,[(1 + 4¢)] ~ 1n?108) ’ @1
and <00

To measure a small difference AR;;, we need the errors in measuring Ew to be less than the ¢
required to give that value of AR;;. Assuming F,, = E,, &+ z4/1/4N, then z,/1/4N < ¢, and

400z
In(10)v'N

To measure a difference of 0R;, = 0R; = 1 = AR;; = 2, weneed N > 115,931 games.

Our situation is complicated by the round-robin tournament format. There are methods for
quantifying the computation of error bounds in this situation, such as using the Fisher Information
Matrix [71]]. The expectation is that the number of games each pair has to play to achieve the same
error bound should be roughly reduced by a factor of 1/4/P — 1 —so for a round-robin tournament
with P players, the number of pairwise games required to achieve some Elo measurement threshold
is reduced to N — N/+/P — 1 pairwise games. We use this approximation here, and report

SR, = 4002 (24)
In(10)y/N(P — 1)

for the error on player ¢’s Elo score, assuming a P player round-robin tournament where each
player plays every other player N times.

Averaging Over Path Dependence

Assume two players have initial Elo scores of I?; and I; for players 7 and j respectively. If these
two players then play N games against each other, their post-play Elo scores depend on the order
that the NV game outcomes are processed. As a simple example, if N = 2 and each player wins one
game and loses one game, the final Elo scores depend on the order we apply the results. To reduce
this source of error in computing Elo, we can average over the final Elo scores for both orderings.
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More generally, we estimate post-tournament Elo scores using the following approach. Given
measured p;;., = Wi;j/N, piju = L;;j/N, and p;;4 = D;j/N, for play between players i and
J where i < j, we create a random sequence of pairs (i, j) where each pair appears N times,
and draw a sample from the multinomial distribution derived from the observed data for each of
these, creating N P(P — 1)/2 simulated game outcomes (in effect simulating one full round-robin
tournament). We create M such sequences. For each sequence, we compute final Elo scores for all
players by processing their games in order, starting from initial scores of 1000. After doing this for
all M sequences, generating M final pairs of Elo scores R}" forp = 0..P — 1 and m = 0..M — 1,
we compute the sample means R, =< R* >, and error bounds =2 < SE* >, / VM. We
<SE})'>m < 400

VM In(10)/N(P-1)
finite sample size N. We found M = 1,000 gives z < SE" >, /\/M ~ (.01 for the N and P
values used here, making its contribution to Elo uncertainty negligible.

We report the final Elo score for player ¢ as

choose M to be large enough so that Vp, our target Elo error due to

400
R, =< R" >, £ ° (25)
In(10)\/N(P — 1)

which for z = 1.96, N = 9,984, and P = 9 gives

R, =< R" >,, £1.2 (26)
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